In situ gas fracturing experiments conducted in the Callovo-Oxfordian claystone

Carlos Plúa, Rémi de La Vaissière and Gilles Armand

PHD SCHOOL

EURAD Training course

28 August - 1 September 2023, Liège

Ce document est la propriété de l'Andra. Il ne peut être reproduit ou communiqué sans son autorisation expresse et préalable.

Context

Context The Cigéo project

- Andra is in charge of the management and disposal of radioactive waste in France
- Cigéo is the French Industrial Center for Geological Disposal for HLW and ILW
 - Licence application in December 2022
 - Location in the eastern part of the Paris basin into a claystone formation

• Callovo-Oxfordian (COx)

- Depth of 500 m
- Favorable characteristics
 - very low hydraulic conductivity
 - Iow molecular diffusion
 - high retention capacity for radionuclides

Context The Meuse/Haute-Marne URL

- Enables scientific and technological research to be carried out directly within the COx
- \circ Objectives in geomechanics
 - To study hydro mechanical behavior
 - To characterize the **Thermo Hydro Mechanical** behavior
 - To perform sealing experiments
 - To characterize the Excavation Damaged Zone
 - Shape depends on the excavation orientation wrt to σh or σH

Context Gas migration in the repository

PGZ1 experiment

PGZ1 Objective

- PGZ1 is dedicated to identify gas migration mechanisms into the COx claystone at different pressure levels
 - Series of gas injection tests at different flow rates
 - Gas: Nitrogen
- 3 instrumented boreholes drilled and equipped in July 2009

PGZ1 Borehole characteristics

PGZ1201 & PGZ1202 drilled from the GMR drift

- Length: 28 m, spacing: 0.9 m
- Oriented parallel to σH
- Equipped with a multipacker system to monitor water/gas pressure in 3 intervals: PGZ120x_01, 02 & 03

• PGZ1031 drilled from the GEX drift

 Equipped with a multiple magnetic extensometers probe (MagX system[®]) to monitor axial deformation

PGZ1 Overview

- \circ 10 years of water/gas pressure monitoring
 - Pore pressure in intervals
 - Mechanical pressure in packers
- \circ PGZ1201_02
 - HYDROx: Water permeability tests
 - GASx: gas injection tests at low rate (slow test)
 - HYDO-FRAC: water injection test to measure σh
- \circ PGZ1202_02
 - GAS-FRAC: gas injection test at high flow rate (fast test)

Ce document est la propriété de l'Andra. Il ne peut être reproduit ou communiqué sans son autorisation expresse et préalable.

PGZ1 PGZ1201 - GAS1 (slow test)

- 6 constant gas flow steps (GRIx) followed by pressure recovery periods (GRISx):
 - maximal pressure = 9.1 MPa
- Classical two-phase flow model reproduces reasonably well observations
 - Two separate zones with different gas entry pressure are required:
 - Inner zone corresponds to the Borehole Damage Zone with a very low gas entry pressure (≤ 2 MPa)
 - Outer zone corresponds to the sound claystone with a high gas entry pressure

PGZ1 PGZ1201 - GAS1 (slow test)

- 6 constant gas flow steps (GRIx) followed by pressure recovery periods (GRISx):
 - maximal pressure = 9.1 MPa
- Classical two-phase flow model reproduces reasonably well observations
 - Two separate zones with different gas entry pressure are required:
 - Inner zone corresponds to the Borehole Damage Zone with a very low gas entry pressure (≤ 2 MPa)
 - Outer zone corresponds to the sound claystone with a high gas entry pressure

Ce document est la propriété de l'Andra. Il ne peut être reproduit ou communiqué sans son auto

Bas flow (kg m-2 s-1)

1.E-17 0.03

Distance r (m)

0.09

0.11

0.07

0.05

PGZ1 PGZ1201 – GAS3 (slow test)

- Constant injection flow rate test until reaching 10.45 MPa
- Then injection was turned to constant injection pressure
 - A sudden gas breakthrough was observed at 10.45 MPa
 - the gas pressure suddenly dropped in the test interval and the flow meter has reached simultaneously its maximum value
- A gas fracture was created with a gas pressure value well **below** the minimum principal stress component (σ h ~ 12.5 MPa)
 - an overall rigid motion is detected on the extensometer string in borehole PG71031

DFO 06

8/28/14 00:00

PGZ1201 @ interval 2

gas flowrate

DFO 03 - DFO 07 -

DFO_04 ----- DFO_08

DEO 02

PGZ1031

0,2

-0.1 -8/24/14 00:00

120

110 (bar)

ure 100

Pressu

o,1 (mm)

displace

DEOLIO

DEO 14

DFO 19

9/1/14 00:00

Gas flowrate mLn/min 10

8

DF0_11 ---- DF0_15

DFO 12 ----- DFO_16 -

PGZ1 PGZ1201 – GAS3 (slow test)

- A new gas injection step was performed a few months later with a gas mixture (nitrogen + helium) and high gas flow rate
 - Helium is used as a gas tracer
 - Detection of helium is done on PG71031 head

This is evidence

that a fracture

was created in the rock

Ce document est la propriété de l'Andra.

- A maximal gas pressure is reached at 9.99 MPa
- During this test, no displacement was detected by the extensometer string
 - The recorded motion is due to human action

DISTEC/3GC/23-0096

PGZ1 PGZ1202 – GAS-FRAC (fast test)

DISTEC/3GC/23-0096

- GAS-FRAC started with an injection at high constant flow rate @ 500 mLn/min that lasted about 2 hours
- The interval pressure reached progressively 14.18 MPa when the injection line was closed in order to monitor the pressure drop
 - Six minutes after the injection line was closed a sudden pressure drop was observed with:
 - a simultaneous increase in pressure in PGZ1202_03
 - a sudden differential displacements recorded by the PGZ1031
- \circ A gas fracture was created with a gas pressure value well above the minimum principal stress component (σh ~ 12.5 MPa)

PGZ1 Summary

- Different gas injection tests at various flow rates (from 1 mLn/min to 500 mLn/min) have been conducted
- GAS1 reveals that generalized Darcy's law allows for the correct modelling of measurements up to 9.1 MPa
 - Gas first percolates radially into the BDZ and then starts to migrate into the sound claystone (with a high gas entry pressure above 4 MPa)
 - Analysis of the different gas injection phases reveals that generalized Darcy's law allows for the correct modelling of measurements up to 9.1 MPa
- During GAS3 & GAS-FRAC, a relationship between gas flow rate and gas fracturing pressure is highlighted
 - Some hypothesis
 - Drained/undrained boundary condition
 - Geometry of the cavity (shape and size of the BDZ)
 - The stress applied by the packers

PGZ3 experiment

PGZ3 Objectives

- $\circ\,$ Study the gas fracturing pressure at different injection flow rates
- $\,\circ\,$ New boreholes have been drilled since 2020
 - Length 35 m
 - Oriented according to the horizontal principal stresses
 - PGZ1002 & PGZ1003 drilled from the GEX drift
 - PGZ3001, PGZ3002 & PGZ3004 drilled from the GRM drift
 - PGZ5301 drilled from the GMA drift

PGZ3 PGZ1002 & PGZ1003 - (fast tests)

• Injection inteval 4:

• Located at 20 m from the drift wall

\circ 3 phases of gas injection tests (~ 500 mLn/min)

- Phase 1 (December 2020):
 - to reach the breaking point of the rock
- Phase 2 (February 2021):
 - To reopen the fracture
- Phase 2 (March 2021):
 - to stimulate and reopen the fracture

PGZ3 PGZ1002 - fast test (Phase 1)

- $\circ\,$ Gas injection test : ~ 90 min
- $\circ\,$ Max. gas pressure : 13.01 MPa
- \circ Interferences:
 - Packers @ interval 3
 - Interval 3 : much deeper (25 m)
 - Interface leakage ?
 - Possible creation of a opening along the borehole?

PGZ3 PGZ1002 - fast test (Phase 1)

Pressure build-up

- Not perfectly linear
 - Gas volume variation
- Inflection observed towards dP = 74.83 bar or 12.78 MPa in absolute pressure
 - correlated with the reaction of packers (interval n° 3)

$\circ\,$ Gas volume variation

- ideal gas law with gas deviation correction (Z factor: compressibility factor)
 - Volume of ~530 mL at the start of the injection (value greater than the volume of water extracted)
- Slow increase in gas volume until inflection

Il ne peut être reproduit ou communiqué sans son autorisation expresse et préalable.

Ce document est la propriété de l'Andra.

PGZ3 PGZ1003 - fast test (Phase 1)

- First step : ~ 90 min
 - Gas pressure end ~ 13.01 MPa
- $\circ\,$ Second step: ~ 35 min
 - Max. gas pressure : 14.28 MPa
- Interferences:
 - Packers @ interval 3 + interval 5
 - Interval 5 : shallower (15 m)
 - Interface leakage ?
 - Possible creation of a opening along the borehole?

PGZ3 PGZ1003 - fast test (Phase 1)

\circ First step

- · Not perfectly linear pressure build-up
- Gas volume variation
 - Volume of ~415 mL at the start of the injection (value greater than the volume of water extracted)
 - Slow increase in gas volume until inflection
- Inflection observed towards dP = 79,87 bar i.e. 12,5 MPa in absolute pressure

PGZ3 PGZ1003 - fast test (Phase 1)

$\circ\,$ Second step

- · Not perfectly linear pressure build-up
- Gas volume variation
 - Volume of ~655 mL at the start of the injection (value lower than the volume at the end of the previous step)
 - Slow increase in gas volume until inflection
- 2 inflection points observed at :
 - 14.05 MPa
 - 14.25 MPa
- Max gas pressure : 14.28 MPa

Ce document est la propriété de l'Andra. elap Il ne peut être reproduit ou communiqué sans son autorisation expresse et prealable.

PGZ3 PGZ3001 - slow test

o **RI2** :

- gas started to percolate along borehole wall
- **RI3**:
 - Sudden drop in pressure at 90,9 bars
 - Correlated with a slight peak in packer pressure PPK01
 - This suggests abrupt detachment at an interface along the borehole wall

o RI4 & RI5:

- interferences are observed surrounding the packers 01-03-04 and into the intervals 01-03-04
- Difficult to increase the pressure
- **RI7**:
 - Fracturing occurred at 131 bars
 - Drop of 6 bars

PGZ3 PGZ3002 - slow test

After RI2 and during RI3 : gas percolates along borehole wall

 Interferences are observed surrounding the packers (01-03-04) and into the intervals (01-03-04)

○ **RI4 & RI5**

- The gas flow rate was increased to compensate for gas leakage along the borehole
 - Max injection rate: 90 mLn/min
 - Difficult to increase the pressure

PGZ3 Summary

Fast injection flow rate (500 mLn/min) in PGZ1002 and PGZ1003

 $\,\circ\,$ a fracture was initiated and spread along borehole wall :

- @ PGZ1002 : 12,78 MPa
- @ PGZ1003 : 14,28 MPa

 A gas fracture was created with a gas pressure value well <u>above</u> the minimum principal stress component (~ 12.5 MPa)

Slow gas injection flow rate in PGZ3001 and PGZ3002

- \circ Fracturing pressure was only reached in PGZ3002
 - 13.1 MPa
- \circ It is difficult to increase the pressure in the testing interval
 - Gas could easily percolate along horizontal boreholes at low pressure

PGZ1 vs PGZ3 Where does the gas flow ?

In PGZ3 boreholes: gas easily percolates along borehole wall or within the BDZ

- \circ Horizontal boreholes
 - Breakouts along borehole wall
 - No perfect circular cavity
 - Tightness between packers and rock
 - Water => YES due to self-sealing
 - Gas => No
 - Tightness between resin and rock
- It is very likely that gas percolates along the interfaces (packer-rock and resin-rock)

In PGZ1 (PGZ1201): no gas flows along borehole • PGZ1201 is oriented // to sigma H but inclined

- Less breakouts ?
 - Better gas tightness between packers and rock ?

Shape of the excavation damaged zone for drift oriented along sigma H

breakout along horizontal borehole (oriented sigma H) => cavity is not perfectly circular

Ce document est la propriété de l'Andra. Il ne peut être reproduit ou communiqué sans son autorisation expresse et preatao

Thank you for your attention

References

- Armand, G. et al. (2014). Geometry and Properties of the Excavation Induced Fractures at the Meuse/Haute-Marne URL Drifts. International Journal of Rock Mechanics and Mining Sciences 27(1): 21-41
- Cuss, R. J. et al. (2014). Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone. Geological Society, London, Special Publications, 400, 507-519
- de La Vaissière, R. et al. (2014). Gas injection test in the Callovo-Oxfordian claystone: data analysis and numerical modelling. Geological Society, London, Special Publications, 400, 427-441
- de La Vaissière, R., et al. (2019). From Two-Phase Flow to Gas Fracturing into Callovo-Oxfordian Claystone. ARMA. Proceedings of the 53rd U.S. Rock Mechanics/Geomechanics Symposium, 23-26 June, New York, USA
- de La Vaissière, R., et al. (2019). Effect of gas flow rate on gas fracturing in Callovo-Oxfordian claystone. ISRM. Proceedings of the 14th International Congress on Rock Mechanics and Rock Engineering, September 13-18, Foz do Iguassu, Brazil
- Harrington, Jon F. et al. (2017). Gas transport properties through intact and fractured Callovo-Oxfordian mudstones. Geological Society, London, Special Publications, 454.
- Marschall, P. et al. (2005). Characterisation of Gas Transport Properties of the Opalinus Clay, a Potential Host Rock Formation for Radioactive Waste Disposal. Oil & gas science & technology 60 (1): 121-139.
- Senger, R. et al. (2006). Design and analysis of a gas threshold pressure test in a low-permeability clay formation at Andra's Underground Research Laboratory, Bure (FRANCE). Proceedings, TOUGH Symposium 2006, Lawrence Berkeley National Laboratory, Berkeley, California, May 15-17, USA

